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We study the origin of anomalous caloric curves and negative heat capacities in the
liquid-gas coexistence region. Coexistence is described in terms of clusterization
in the vapor according to Fisher’s formula. Multifragmentation data are used to
determine the liquid-vapor coexistence line. The phase diagram is obtained for the
finite system and an extrapolation is made to infinite nuclear matter.

The nuclear thin skin is the basis of the liquid drop model, which man-
ages to reproduce the binding energies of nuclei to within 1%. A similar
leptodermous treatment of nuclear systems at T > 0 should lead to an
equivalently good reproduction of nuclear thermodynamical properties.

The appearance of a vapor phase at T > 0 opens two complementary
perspectives for the characterization of phase coexistence: the liquid per-
spective and the vapor perspective. From the liquid perspective, one can
determine the caloric curve in terms of vaporization enthalpy. From the va-
por perspective one considers the extent to which nucleons are aggregated
into clusters, as an indicator of incipient liquid condensation.

In the first part of this presentation we take the liquid perspective and
derive analytically the caloric curve and the (negative) heat capacity for a
drop undergoing an isobaric phase transition. In the second part we take
the vapor perspective and show that clusterization in the 3d Ising model
can be accounted for in terms of the leptodermous expansion.

Recently, first order phase transitions in small systems were associ-
ated with anomalous convex intruders in the entropy versus energy curves,
resulting in back-bendings in the caloric curve, and in negative heat
capacities1. In the context of nuclear physics, the claim has been made
of an empirical observation of these anomalies, such as negative heat ca-
pacities in nuclear systems2.
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In this section we investigate the role of varying potential energies
(“ground states”) with system size on caloric curves and negative heat ca-
pacities. Our study applies to leptodermous (thin skinned) van der Waals-
like fluids and to models such as Ising, Potts, and lattice gas.

Consider a macroscopic drop of a van der Waals fluid with A con-
stituents in equilibrium with its vapor. The vapor pressure p is given by

p ' po exp
(
−∆Hm

T

)
, (1)

where ∆Hm is the molar vaporization enthalpy and ∆Vm is the molar
change in volume. Equation (1) represents the p-T univariant line in the
phase diagram for a drop of finite size where ∆Hm must be corrected for
the surface energy of the drop3

p = p0 exp
(
−∆H0

m

T
+

as

A1/3T

)
= pbulk exp

( as

A1/3T

)
. (2)

where as is the surface energy coefficient. At constant T the vapor pressure
increases with decreasing size of the drop (see Fig. 1).
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Figure 1. Left: the log of the saturated vapor pressure as a function of inverse temper-
ature for different droplet radii. Arrows illustrate the path of evaporation at constant

pressure. Right: The temperature as a function of droplet size for a drop evaporating

at constant pressure (open boundary conditions). The solid line shows the case of a
spherical drop, while the dotted line shows the case of a finite cubic lattice evolving as
in Fig. 2 top.

Consider the case of isobaric evaporation of a drop starting from a drop
with A0 constituents and evaporating into a drop with A < A0 constituents.
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Let us define the drop size parameter y = A0−A
A0

. At constant pressure

p0 exp
(
−∆H0

m

T

)
= p0 exp

(
−∆Hm(y)

Ty

)
, (3)

from which follows
Ty

T∞
' ∆Hm(y)

∆H0
m

' 1− 1
A1/3

' 1− 1

A
1/3
0 (1− y)1/3

. (4)

A slight decrease in temperature is predicted as the drop evaporates isobar-
ically, thus leading to a negative isobaric heat capacity in the coexistence
region as illustrated in Fig. 1. As the drop is evaporating at constant pres-
sure, the drop moves from one coexistence curve to another according to
its decrease in radius, and thus to progressively lower temperatures. This
slight effect is due not to an increase in surface since the drop surface of
course diminishes as A2/3, but to the slight increase of molar surface (see
Fig. 2). Also, the formation of bubbles in the body of the drop is thermo-
dynamically disfavored by the factor f = exp(−γ∆S/T ) where ∆S is the
surface of the bubble.
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Figure 2. Left Top: The surface So (dashed) and molar surface So
m (solid) area of a drop

for open boundary conditions normalized to their values at y = 0. Left Bottom: The

surface Sp (dashed) and molar surface Sp
m (solid) area of a drop for periodic boundary

conditions normalized to their values at y = 0. In-sets show the configurations at various

values of y. Right: the temperature as a function of droplet size for a drop evaporating

at constant pressure in a system with periodic boundary conditions. The solid line shows
the case of a finite cubic lattice with periodic boundary conditions evolving as in Fig. 2
bottom, while the dotted line and the dashed line are the same as in Fig. 1 and the

vertical dash-dotted line indicates the case of 50% lattice occupation.

Let us now move to the cases of lattice gas, Ising, and Potts models.
We consider first an evaporating finite system in three dimensions of size
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A0 = L3, with open boundary conditions. For maximal density at T = 0
(the ground state) y = 0 and the entire cubic lattice is filled. For decreasing
densities, always at T = 0 a single cluster of minimum surface is present,
which evolves from a cube to a sphere. The associated change in surface is
shown in Fig. 2. The caloric curve from y = 0 to y = 1/2 is essentially flat
like in the infinite system, and the heat capacity is trivially infinite.

The introduction of periodic boundary conditions rids the system of
“dangling bonds.” At y = 0, the lattice is filled with particles so that
∆Hm(0) = ∆H0

m characteristic of the infinite system. As y increases at
fixed lattice size, a bubble develops in the cube and surface is rapidly created
(see Fig. 2). The bubble develops since the periodic boundary conditions
prevent evaporation from the surface. The bubble grows with increasing y

until it touches the sides of the lattice. This occurs for y ≈ 1/2. At nearly
y = 1/2 and beyond, the “stable” configuration is a drop that eventually
vanishes at y = 1. The change in surface associated with the range 0 ≤ y ≤
1 as well as the molar surface are shown in the bottom left panel of Fig. 2.

The evaporation enthalpy thus becomes

∆Hm(y) ' av

(
1− y2/3

A
1/3
0 (1− y)

)
(5)

from y = 0 to y = 1/2, and

∆Hm(y) ' av

(
1− 1

A
1/3
0 (1− y)1/3

)
(6)

from y = 1/2 to y = 1. As a consequence, for periodic boundary conditions

Ty

T∞
' 1− y2/3

A
1/3
0 (1− y)

(7)

from y = 0 to y = 1/2, while from y = 1/2 to y = 1 Eq. (4) holds.
The dramatic effect of periodic boundary conditions can be seen in

Fig. 2. The temperature decreases substantially with increasing y, due to
the fact that the molar enthalpy at y = 0 assumes its bulk value ∆H0

m

and must meet the previous case of open boundary conditions for y = 1/2.
This may well explain the calculated negative heat capacities reported in
literature, as due to the unnatural choice of boundary conditions.

In the case of nuclei the quantity ∆Hm is determined by all the terms
in the liquid drop model, which contribute to the mean binding energy
per nucleon. One can immediately infer that when the binding energy per
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nucleon decreases with A, the heat capacity should be positive, and vice-
versa. Thus, since the maximum binding energy per nucleon occurs at
A ∼ 60, negative heat capacities should be possible only for A < 60.

Explicitly,

Cp =
(∆Hm(A))2

T
d∆Hm

dA

. (8)

The derivative in the denominator can be evaluated approximately from the
dependence on the binding energy per nucleon B upon the mass number
d∆Hm

dA = dB
dA . The liquid drop model allows us to estimate such a derivative.

From Fig. 3 it is apparent that the binding energy decreases with A for
A >∼ 60. Consequently in all this region of A, positive specific heats should
be expected. Only for A <∼ 60, negative specific heats are predicted.
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Figure 3. The binding energy of atomic nuclei (top) and the associated heat capacity

(bottom).

This straightforward result based on elementary thermodynamics and
ground state binding energies raises serious questions as to the meaning of
the negative heat capacities claimed in large nuclear systems2.

In multifragmentation, reducibility is the property that the probability
of observing n-fragments of a given size is expressible in terms of an ele-
mentary one-fragment probability. Both binomial, and its limiting form,
Poissonian reducibilities have been extensively documented experimentally
for nuclear multifragmentation4,5.

Thermal scaling is the linear dependence of the logarithm of the one-
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Figure 4. Left: The probability distributions for obtaining m fragments of size A at

the three temperatures indicated. The solid lines are Poisson distributions with means
given by the Monte Carlo data. Right: Arrhenius plots of the cluster distributions. The
lines are fits of the form given in Eq. (9). The critical temperature is indicated by the

dashed line.

fragment probability with 1/T (an Arrhenius plot) according to:

qi = q0e
−Bi/T = q0e

−c0Aσ/T (9)

where Bi is a “barrier” corresponding to the production process.
The combination of these two empirical features attests to a statistical

mechanism of multifragmentation in general, and to liquid-vapor coexis-
tence specifically8.

In this light we analyze the Ising results in the same way as has been
done with nuclear multifragmentation data4,5. Fig. 4 shows the multi-
plicity distributions for a sample of fragment sizes and temperatures. The
solid lines represent Poisson distributions calculated from the corresponding
mean multiplicities. The distributions are remarkably close to Poissonian
for all masses and all temperatures below, at and above Tc.

If the fragment distributions exhibit thermal scaling, its Arrhenius plot
should be linear. As shown in Fig. 4, this is the case over a wide range of
temperatures (0 < T < Tc) and fragment sizes.

The features of reducibility and thermal scaling discussed above can be
found united in Fisher’s formula6,7.

nA(T ) = q0A
−τ exp(

c0A
σ

Tc
) exp(−c0A

σ

T
) (10)

where q0 is a normalization constant, τ is a topological critical exponent,
c0 is the surface energy coefficient and ε = (Tc−T )/Tc. Therefore, a graph
of the scaled cluster distributions (nA(T )Aτ/q0) as a function of εAσ/T
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Figure 5. Left: the scaled yield distribution versus the scaled temperature for the ISiS

data (upper) and d = 3 Ising model calculation (lower). Upper right: The reduced
pressure-temperature phase diagram: Lower right: The reduced density-temperature

phase diagram.

should collapse the distributions of all cluster sizes onto a single curve.
This scaling behavior can clearly be seen in Fig. 5.

The ISiS data sets

The ISiS charge yields from AGS experiment of 8 GeV/c π + Au frag-
mentation data were fit to the following modified form of Eq. (10) which
incorporates the Coulomb. The scaled data shown in Fig. 5 collapse to a
single line over six orders of magnitude. This line is the liquid to vapor
phase coexistence line in excited nuclei.

Fisher’s model assumes that the non-ideal vapor can be approximated
by an ideal gas of clusters. Accordingly, the total pressure is the sum of
their partial pressures: p/T =

∑
nA. The resulting p, T diagram is given

in Fig. 5.
Fitting the coexistence line p/pc = exp(∆H/Tc(1 − Tc/T )) which de-

scribes many fluids gives ∆H = 26 ± 1 MeV from which ∆E ≈15 AMeV,
remarkably close to the nuclear bulk energy coefficient.

The system’s density can be found from ρ =
∑

AnA as shown in Fig. 5.
Following Guggenheim9:

ρl,v

ρc
= 1 + b1(1−

T

Tc
)± b2(1−

T

Tc
)1/3. (11)

Fitting the coexistence curve from the ISiS E900a data with Eq. (11) one
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obtains an estimate of the full ρv branch of the coexistence curve and chang-
ing the sign of b2 gives the full ρl branch of the coexistence curve of finite
neutral nuclear matter. The critical density is found to be ρc ∼ 0.3ρ0.

The EOS data sets

The EOS Collaboration has collected data for the reverse kinematics reac-
tions 1.0 AGeV Au+C, 1.0 AGeV La+C and 1.0 AGeV Kr+C10,11.
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Figure 6. The scaled yield distribution versus the scaled temperature for the gold,

lanthanum and krypton systems. The solid line has a slope of c0.

Fig. 6 shows the Fisher plot of fragment mass yield distribution scaled
by the power law pre-factor, the chemical potential and Coulomb terms.
The scaled data for all three systems collapse onto a single line over several
orders of magnitude. This collapse provides direct evidence for a liquid to
vapor phase transition in excited nuclei.

The p-T and T -ρ coexistence curves can be determined from this anal-
ysis by transforming the information in Fig. 6 into the phase diagrams in
Fig. 7. From these it is possible to make an estimate of the bulk binding
energy of nuclear matter and the ∆E/A ≈14 MeV, close to the nuclear
bulk energy coefficient of 15.5 MeV.

Finite size effects are paramount in nuclei. The binding energy per
nucleon decreases from the ∼ 15.5 AMeV of nuclear matter to about 8
AMeV for typical nuclei.

We can expect that such a drastic reduction affects the critical tempera-
ture as well. The Ising model can be used again as a simple testing ground.
If a finite system is considered (no periodic boundary conditions) a surface
is generated with the attendant surface energy. This allows us to write a
“liquid drop” formula for the Ising model: E = aV A + aSA2/3.
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Figure 7. EOS data results. Left: The reduced pressure-temperature phase diagram.

The lines show fits to the Clausius-Clapeyron equation. Right: the reduced density-
temperature phase diagram. The lines are a fit to and reflection of Guggenheim’s equa-
tion.

Figure 8. Left: the naive estimate of finite size scaling. Right: a more sophisticated
estimate of finite size scaling. The data points and fits on the bottom of both figures

show the results for lattices with open boundary conditions (no p.b.c.) and more closely

represent the case of finite systems like nuclei.

We now determine the critical temperature for various sizes (lattices)
and check its dependence on the lattice size (see Fig. 8). For a finite system
all the quantities with the dimension of energy should scale with the binding
energy per site corrected for the surface energy

TA0
c

T∞c
=

aV A0 + aSA
2/3
0

aV A0
= 1− 1

A
1/3
0

= 1− 1
L

(12)

where A0 is the number of sites in the lattice and L is the linear lattice
side. As we can see in Fig. 8, this scaling works quite well.

The result of this exercise shows that the critical temperature of infinite
nuclear matter can be obtained in a similar way. In each of the three EOS
reactions, remnants of different sizes make a good range of A0 accessible.
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Figure 9. Fisher scaling and finite size scaling analysis of the ISiS and EOS data sets.

The preliminary results are shown in Fig. 9. The extracted values for
the critical temperature of infinite nuclear matter are ∼ 13.6 MeV from the
ISiS data and ∼ 12.9 MeV from the EOS data. These values agree with
theoretical estimates of the critical temperature of bulk nuclear matter.
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